You have searched the Eric Feminella blog archives for Principle of Least Knowledge. If you are unable to find anything in these search results, you can try with different search query

Principle of Least Knowledge

One very important (yet often overlooked) design guideline which I advocate is the Principle of least knowledge.

The Principle of Least knowledge, also known as The law of Demeter, or more precisely, the Law of Demeter for Functions/Methods (LoD-F) is a design principle which provides guidelines for designing a system with minimal dependencies. It is typically summarized as “Only talk to your immediate friends.”

What this means is a client should only have knowledge of an objects members, and not have access to properties and methods of other objects via the members. To put it in simple terms you should only have access to the members of the object, and nothing beyond that. Think if it like this: if you use more than 1 dot you are violating the principle.

Consider the following: We have three classes: ClassA, ClassB and ClassC. ClassA has an instance member of type ClassB. ClassB has an instance member of type ClassC. This can be designed in such a way which allows direct access all the way down the dependency chain to ClassC or beyond, as in the following example:

The above example is quite common, however it violates The Principle of Least Knowledge as it creates multiple dependencies, thus reducing maintainability as should the internal structure of ClassA need to change so would all instances of ClassA.

Now keep in mind that in all software development there are trade-offs to some degree. Sometimes performance trumps maintainability or vice-versa, other times readability trumps both. A perfect example of where you would not want to use The Principle of Least Knowledge is in a Cairngorm ModelLocator implementation. The Cairngorm ModelLocator violates the Principle of least knowledge for good reason – it simply would not be practical to write wrapper methods for every object on the ModelLocator. This is the main drawback of the Principle of least Knowledge; the need to create wrapper methods for each object, which are more formally known as Demeter Transmogrifiers.

The goal of good software design is to minimize dependencies, and by carefully following the guidelines provided by The Principle of Least Knowledge this becomes much easier to accomplish.

Guiding Design with Behavior Verification and Mock Objects

At some point every developer who has disciplined themselves in the ritualistic like art and science of Test Driven Development soon discovers that the collaborators on which a class under test depend introduce an additional layer of complexity to consider when writing your tests – and designing your APIs.

For example, consider a simple test against a class Car which has an instance of class Engine. Car implements a start method which, when invoked, calls the Engine object’s run method. The challenge here lies in testing the dependency Car has on Engine, specifically, how one verifies that an invocation of Car.start results in the Engine object’s run method being called.

There are two ways of testing the above example of Car, which in unit testing nomenclature is called the System Under Test (SUT), and it’s Engine instance which is Car's Depended-on Component (DOC). The most common approach is to define assertions based on the state of both the SUT and it’s DOC after being exercised. This style of testing is commonly referred to as State Verification, and is typically the approach most developers initially use when writing tests.

Using the above Car example, a typical State Verification test would be implemented as follows:

Figure 1. CarTest, State Verification.

From a requirements perspective and therefore a testing and implementation perspective as well, the expectation of calling start on Car is that it will A.) change it’s running state to true, and B.) invoke run on it’s Engine instance. As you can see in Figure 1, in order to test the start method on Car the Engine object must also be tested. In the example, using the State Verification style of testing, Car exposes the Engine instance in order to allow the state of Engine to be verified. This has lead to a less than ideal design as it breaks encapsulation and violates Principle of Least Knowledge. Obviously, a better design of Car.isStarted could be implemented such that it determines if it’s Engine instance is also in a running state; however, realistically, will likely need to do more than just set its running state to true; conceivable, it could need to do much, much more. More importantly, while testing Car one should only be concerned with the state and behavior of Car – and not that of its dependencies. As such, it soon becomes apparent that what really needs to be tested with regards to Engine in Car.start is that is invoked, and nothing more.

With this in mind, the implementation details of are decidedly of less concern when testing Car; in fact, a “real” concrete implementation of Engine need not even exist in order to test Car; only the contract between Car and Engine should be of concern. Therefore, State Verification alone is not sufficient for testing Car.start as, at best, this approach unnecessarily requires a real Engine implementation or, at worst, as illustrated in Figure 1, can negatively guide design as it would require exposing the DOC in order to verify its state; effectively breaking encapsulation and unnecessarily complicating implementation. To reiterate an important point: State Verification requires an implementation of Engine and, assuming Test First is being followed (ideally, it is), the concern when testing Car should be focused exclusively on Car and it’s interactions with its DOC; not on their specific implementations. And this is where the second style of testing – Behavior Verification – plays an important role in TDD.

The Behavior Verification style of testing relies on the use of Mock Objects in order to test the expectations of an SUT; that is, that the expected methods are called on it’s DOC with the expected parameters. Behavior Verification is most useful where State Verification alone would otherwise negatively influence design by requiring the implementation of needless state if only for the purpose of providing a more convenient means of testing. For example, many times an object may not need to be stateful or the behavior of an object may not always require a change in it’s state after exercising the SUT. In such cases, Behavior Verification with Mock Objects will lead to a simpler, more cohesive design as it requires careful design considerations of the SUT and it’s interactions with its DOC. A rather natural side-effect of this is promoting the use of interfaces over implementations as well as maintaining encapsulation.

For testing with Behavior Verification in Flex, there are numerous Mock Object frameworks available, all of which are quite good in their own right and more or less provide different implementations of the same fundamental concepts. To name just a few, in no particular order, there are asMock, mockito-flex, mockolate and mock4as.

While any of the above Mock Testing Frameworks will do, for the sake of simplicity I will demonstrate re-writing the Cartest using Behavior Verification based on mock4as – if for nothing other than the fact that it requires implementing the actual Mock, which helps illustrate how everything comes together. Moreover, the goal of this essay is to help developers understand the design concepts surrounding TDD with Behavior Verification and Mock Objects by focusing on the basic design concepts; not the implementation specifics of any individual Mock Framework.

Figure 2. CarTest, Behavior Verification approach.

Let’s go through what has changed in CarTest now that it leverages Behavior Verification. First, Car's constructor has been refactored to require an Engine object, which now implements an IEngine interface, which is defined as follows.

Figure 3. IEngine interface.

Note Engine.isRunning is no longer tested, or even defined as, it is simply not needed when testing Car: only the call to is to be verified in the context of calling Car.start. Since focus is exclusively on the SUT, only the interactions between Car and Engine are of importance and should be defined. The goal is to focus on the testing of the SUT and not be distracted with design or implementation details of it’s DOC outside of that which is needed by the SUT.

MockEngine provides the actual implementation of IEngine, and, as you may have guessed, is the actual Mock object implementation of IEngine. MockEngine simply serves to provide a means of verifing that when Car.start is exercised it successfully invokes; effectively satisfiying the contract between Car and Engine. MockEngine is implemented as follows:

Figure 4. MockEngine implementation.

MockEngine extends org.mock4as.Mock from which it inherits all of the functionality needed to “Mock” an object, in this case, an IEngine implementation. You’ll notice that does not implement any “real” functionality, but rather it simply invokes the inherited record method, passing in the method name to record for verification when called. This is the mechanism which allows a MockEngine instance to be verified once run is invoked.

CarTest has been refactored to now provide two distinct tests against Car.start. The first, testStartChangesState(), provides the State Verification test of Car; which tests the expected state of Car after being exercised. The second test, testStartInvokesEngineRun(), provides the actual Behavior Verification test which defines the expectations of the SUT and verification of those expectations on the DOC; that is, Behavior Verification tests are implemented such that they first define expectations, then exercise the SUT, and finally, verify that the expectations have been met. In effect, this verifies that the contract between an SUT and its DOC has been satisfied.

Breaking down the testStartInvokesEngineRun() test, it is quite easy to follow the steps used when writing a Behavior Verification test.

And that’s basically it. While much more can be accomplished with the many Mock Testing frameworks available for Flex, and plenty of information is available on the specifics of the subject, this essay quite necessarily aims to focus on the design benefits of testing with Behavior Verification; that is, the design considerations one must make while doing so.

With Behavior Verification and Mock Objects, design can be guided into existence based on necessity rather than pushed into existence based on implementation.

The example can be downloaded here.